November 3, 2017

(1) The savings function for a small country is given by

$$
S=\frac{Y^{2}+2 Y+1}{9 Y+20}
$$

where Y is annual income and S is annual savings, both measured in billions of dollars per year.
a. (5 pts) Find the nation's marginal propensity to save, $\frac{d S}{d Y}$, and marginal propensity to consume, $\frac{d C}{d Y}$, when national income is $\$ 10$ billion.

$$
\frac{d S}{d Y}=\frac{(2 Y+2)(9 Y+20)-9\left(Y^{2}+2 Y+1\right)}{(9 Y+20)^{2}}=\frac{9 Y^{2}+40 Y+31}{(9 Y+20)^{2}}
$$

so

$$
\left.\frac{d S}{d Y}\right|_{Y=10}=\left.\frac{9 Y^{2}+40 Y+31}{(9 Y+20)^{2}}\right|_{Y=10}=\frac{1331}{12100}=0.11
$$

and

$$
\left.\frac{d C}{d Y}\right|_{Y=10}=1-\left.\frac{d S}{d Y}\right|_{Y=10}=0.89
$$

b. (3 pts) Find $\lim _{Y \rightarrow \infty} \frac{d S}{d Y}$ and interpret your answer in economic terms.

$$
\lim _{Y \rightarrow \infty} \frac{d S}{d Y}=\lim _{Y \rightarrow \infty} \frac{9 Y^{2}+40 Y+31}{(9 Y+20)^{2}}=\lim _{Y \rightarrow \infty} \frac{9 Y^{2}+40 Y+31}{81 Y^{2}+360 Y+400}=\lim _{Y \rightarrow \infty} \frac{9 Y^{2}}{81 Y^{2}}=\frac{1}{9}
$$

Interpretation: When income is large, the nation will tend to save about $1 / 9$ of every additional dollar of income.
(2) The demand equation for a monopolistic firm's product is

$$
q=100-0.25 p^{2}
$$

where p is the price per unit (in dollars) of the firm's product and q is the weekly demand for the firm's product, measured in 100s of units.
a. (3 pts) Find the price-elasticity of demand for this firm's product when the price is $p_{0}=\$ 10$. Show your work.

$$
\eta_{q / p}=\frac{d q}{d p} \cdot \frac{p}{q}=\overbrace{-0.5 p}^{d q / d p} \cdot \frac{p}{100-0.25 p^{2}}=-\frac{0.5 p^{2}}{100-0.25 p^{2}},
$$

so

$$
\left.\eta_{q / p}\right|_{p=10}=-\left.\frac{0.5 p^{2}}{100-0.25 p^{2}}\right|_{p=10}=-\frac{50}{75}=-\frac{2}{3}
$$

b. (2 pts) Use your answer to a. to find the firm's marginal revenue $d r / d q$ when the price is $p_{0}=\$ 10$.

$$
\left.\frac{d r}{d q}\right|_{p=10}=\left.p\left(1+\frac{1}{\eta_{q / p}}\right)\right|_{p=10}=10 \cdot\left(1+\frac{1}{-2 / 3}\right)=-5
$$

c. (3 pt) What will be the approximate percentage change in the demand for the firm's product if they raise the price of their good from $p_{0}=\$ 10$ to $p_{1}=\$ 10.25$? Explain your reasoning.

Linear approximation for percentage change:

$$
\% \Delta q \approx \eta_{q / p} \cdot \% \Delta p=-\frac{2}{3} \cdot \overbrace{\left(\frac{0.25}{10} \cdot 100 \%\right)}^{\% \Delta p}=-\frac{2}{3} \cdot 2.5 \% \approx-1.667 \%
$$

(3) The marginal revenue function for ACME Widgets Inc. is

$$
\frac{d r}{d q}=\frac{10 q}{0.07 q^{2}+13}
$$

where q is monthly output, measured in 100 s of widgets, and r is monthly revenue, measured in $\$ 1000$ s. ACME's production function is

$$
q=5(3 l+4)^{1 / 2}
$$

where l is the number of FTEs that the firm employs per month.
An FTE is a full-time equivalent: a person working a 40-hour work week counts as 1 FTE, while a part-time laborer who works 30 hours a week, for example, counts as 0.75 FTEs.
a. (3 pts) Compute ACME's output and marginal product of labor, $d q / d l$, when $l_{0}=20$.

$$
\left.q\right|_{l=20}=5 \cdot 64^{1 / 2}=40 \quad \text { and }\left.\quad \frac{d q}{d l}\right|_{l=20}=\left.\frac{15}{2}(3 l+4)^{1 / 2}\right|_{l=20}=\frac{15}{16}
$$

b. (2 pts) Compute ACME's marginal revenue product, $d r / d l$, when $l_{0}=20$.

$$
\overbrace{\left.\frac{d r}{d l}\right|_{l=20}=\left.\left.\frac{d r}{d q}\right|_{q=40} \cdot \frac{d q}{d l}\right|_{l=20}}^{\text {chain rule }}=\left.\frac{10 q}{0.07 q^{2}+13}\right|_{q=40} \cdot \frac{15}{16}=\frac{400}{125} \cdot \frac{15}{16}=3
$$

c. (3 pts) Suppose that ACME hires a new part-time widget washer to work 10 hours a week. By approximately how much will ACME's monthly revenue change? Express your answer in dollars.

Linear approximation:

$$
\left.\Delta r \approx \frac{d r}{d l}\right|_{l=20} \cdot \Delta l=3 \cdot 0.25=0.75
$$

so monthly revenue will increase by about $0.75 \cdot \$ 1000=\$ 750$.
Remember - l is measured in 40-hour work weeks, so an increase of 10 hours/week in labor input means that $\Delta l=10 / 40=0.25$.
(4) Find the derivatives of the following functions. Clean up your answers.
a. $(3 \mathrm{pts}) y=\frac{3 x^{2}+x+1}{5 x-2}$

$$
\frac{d y}{d x}=\frac{(6 x+1)(5 x-2)-5\left(3 x^{2}+x+1\right)}{(5 x-2)^{2}}=\frac{15 x^{2}-12 x-7}{(5 x-2)^{2}}
$$

b. (2 pts) $g(t)=3 \ln \left(t^{4}+2 t-2\right)$

$$
g^{\prime}(t)=3 \cdot \frac{4 t^{3}+2}{t^{4}+2 t-2}=\frac{12 t^{3}+6}{t^{4}+2 t-2}
$$

c. $(3$ pts $) f(u)=5 e^{u} \cdot u^{3}$

$$
f^{\prime}(u)=5 e^{u} \cdot u^{3}+5 e^{u} \cdot 3 u^{2}=5 e^{u}\left(u^{3}+3 u^{2}\right)
$$

