(1) The savings function for a small country is given by

\[S = \frac{Y^2 + 2Y + 1}{9Y + 20}, \]

where \(Y \) is annual income and \(S \) is annual savings, both measured in billions of dollars per year.

a. (5 pts) Find the nation’s marginal propensity to save, \(\frac{dS}{dY} \), and marginal propensity to consume, \(\frac{dC}{dY} \), when national income is $10 billion.

\[
\frac{dS}{dY} = \frac{(2Y + 2)(9Y + 20) - 9(Y^2 + 2Y + 1)}{(9Y + 20)^2}
\]

so

\[
\left. \frac{dS}{dY} \right|_{Y=10} = \frac{9Y^2 + 40Y + 31}{(9Y + 20)^2}
\]

and

\[
\left. \frac{dC}{dY} \right|_{Y=10} = 1 - \frac{dS}{dY}
\]

b. (3 pts) Find \(\lim_{Y \to \infty} \frac{dS}{dY} \) and interpret your answer in economic terms.

\[
\lim_{Y \to \infty} \frac{dS}{dY} = \lim_{Y \to \infty} \frac{9Y^2 + 40Y + 31}{(9Y + 20)^2} = \lim_{Y \to \infty} \frac{9Y^2 + 40Y + 31}{81Y^2 + 360Y + 400} = \lim_{Y \to \infty} \frac{9Y^2}{81Y^2} = \frac{1}{9}.
\]

Interpretation: When income is large, the nation will tend to save about \(\frac{1}{9} \) of every additional dollar of income.

(2) The demand equation for a monopolistic firm’s product is

\[q = 100 - 0.25p^2, \]

where \(p \) is the price per unit (in dollars) of the firm’s product and \(q \) is the weekly demand for the firm’s product, measured in 100s of units.

a. (3 pts) Find the price-elasticity of demand for this firm’s product when the price is \(p_0 = $10 \). **Show your work.**

\[
\eta_{q/p} = \frac{dq}{dp} \cdot \frac{p}{q} = \frac{dq}{dp} \cdot \frac{p}{100 - 0.25p^2} = \frac{-0.5p^2}{100 - 0.25p^2},
\]

so

\[
\left. \eta_{q/p} \right|_{p=10} = \frac{-0.5p^2}{100 - 0.25p^2} \bigg|_{p=10} = \frac{50}{75} = \frac{2}{3}.
\]
b. (2 pts) Use your answer to a. to find the firm’s **marginal revenue** dr/dq when the price is $p_0 = 10$.

$$\frac{dr}{dq}\bigg|_{p=10} = p \left(1 + \frac{1}{\eta q/p} \right) \bigg|_{p=10} = 10 \cdot \left(1 + \frac{1}{2/3} \right) = -5.$$

c. (3 pt) What will be the approximate **percentage change** in the demand for the firm’s product if they raise the price of their good from $p_0 = 10$ to $p_1 = 10.25$? **Explain your reasoning**.

Linear approximation for percentage change:

$$\%\Delta q \approx \eta q/p \cdot \%\Delta p = \frac{2}{3} \left(\frac{0.25}{10} \cdot 100\% \right) = \frac{2}{3} \cdot 2.5\% \approx -1.667\%$$

(3) The **marginal revenue** function for ACME Widgets Inc. is

$$\frac{dr}{dq} = \frac{10q}{0.07q^2 + 13},$$

where q is monthly output, measured in 100s of widgets, and r is monthly revenue, measured in $1000s.

ACME’s production function is

$$q = 5(3l + 4)^{1/2},$$

where l is the number of FTEs that the firm employs per month.

An FTE is a **full-time equivalent**: a person working a 40-hour work week counts as 1 FTE, while a part-time laborer who works 30 hours a week, for example, counts as 0.75 FTEs.

a. (3 pts) Compute ACME’s **output** and **marginal product of labor**, dq/dl, when $l_0 = 20$.

$$q\bigg|_{l=20} = 5 \cdot 64^{1/2} = 40 \quad \text{and} \quad \frac{dq}{dl}\bigg|_{l=20} = \frac{15}{2}(3l + 4)^{1/2}\bigg|_{l=20} = \frac{15}{16}.$$

b. (2 pts) Compute ACME’s **marginal revenue product**, dr/dl, when $l_0 = 20$.

$$\frac{dr}{dl}\bigg|_{l=20} = \frac{dr}{dq}\bigg|_{q=40} \cdot \frac{dq}{dl}\bigg|_{l=20} = \frac{10q}{0.07q^2 + 13}\bigg|_{q=40} \cdot \frac{15}{16} = \frac{400}{125} \cdot \frac{15}{16} = 3.$$

c. (3 pts) Suppose that ACME hires a new part-time widget washer to work 10 hours a week. **By approximately how much will ACME’s **monthly revenue** change? Express your answer in dollars.**

Linear approximation:

$$\Delta r \approx \frac{dr}{dl}\bigg|_{l=20} \cdot \Delta l = 3 \cdot 0.25 = 0.75$$

so monthly revenue will increase by about $0.75 \cdot 1000 = 750$.

Remember — l is measured in 40-hour work weeks, so an increase of 10 hours/week in labor input means that $\Delta l = 10/40 = 0.25$.

2
Find the derivatives of the following functions. **Clean up your answers.**

a. (3 pts) \(y = \frac{3x^2 + x + 1}{5x - 2} \)

\[
\frac{dy}{dx} = \frac{(6x + 1)(5x - 2) - 5(3x^2 + x + 1)}{(5x - 2)^2} = \frac{15x^2 - 12x - 7}{(5x - 2)^2}
\]

b. (2 pts) \(g(t) = 3 \ln(t^4 + 2t - 2) \)

\[
g'(t) = 3 \cdot \frac{4t^3 + 2}{t^4 + 2t - 2} = \frac{12t^3 + 6}{t^4 + 2t - 2}
\]

c. (3 pts) \(f(u) = 5e^u \cdot u^3 \)

\[
f'(u) = 5e^u \cdot u^3 + 5e^u \cdot 3u^2 = 5e^u(u^3 + 3u^2)
\]